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Abstract: In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 

(tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully 

remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost 

mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be 

imported into human mitochondria in vivo, and can thus be potentially used as a vector to 

address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. 

Better understanding of the targeting mechanism in yeast and human is thus critical. 

Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational 

rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial 

pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes 

to reach the matrix where imported tRK1 could be used by the mitochondrial translation 

apparatus. This work focuses on the characterization of the complex that tRK1 forms with 
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human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA 

synthetase (preKARS2). 
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1. Introduction 

Mitochondria are the centres of critical cellular processes, such as oxidative phosphorylation, 

apoptosis, fatty acids, amino acids and Fe–S cluster metabolisms. Despite this central role, mitochondria 

present genomes only encoding a fistful of proteins and RNAs dedicated to oxidative phosphorylation 

or mitochondrial translation. The regulation of mitochondrial activities thus relies on nuclear-encoded 

factors, which need to be imported in a concerted way in order to tune mitochondrial activity with 

cytosolic conditions [1,2]. The process of mitochondrial import of cytosolic proteins is far better 

understood than the process of RNA import, although mitochondrial RNA import has been described 

in fungi, protozoa, plants and mammals [3]. 

Regarding tRNAs, the existence of mitochondrial genomes encoding few or no tRNAs in certain 

organisms such as cniderians or protozoa, respectively, certainly indicates that tRNAs import is 

necessary for translation [4,5]. However, tRNAs can also be imported in mitochondria of organisms 

with a full set of mitochondrial DNA-encoded tRNAs. In the yeast Saccharomyces cerevisiae, tRNALys 

acceptor 1 (tRK1) is imported despite the presence of a mitochondrial encoded tRNALys (tRK3) [6].  

In this case, a ~3% fraction of the tRK1 cytosolic pool is constitutively routed towards mitochondria. 

The import of tRK1 does not confer any obvious advantage to the cell per se, except when position 34 

of tRK3 becomes hypomodified at non-permissive temperature (37 °C), which creates a dependence  

of mitochondrial translation upon tRK1 import [7]. 

Yeast tRK1 can also be imported in human mitochondria in vitro [8] and in vivo [9], despite that 

tRNALys mitochondrial import has not been demonstrated so far in mammals. At present, the reasons for 

maintaining this cryptic mechanism in human cells are unknown. The capacity of human cells to import 

tRK1 into mitochondria points to the possibility to use tRK1 as a vector to target foreign RNA into the 

mitochondrial matrix. This strategy has been demonstrated experimentally by achieving replacement 

of the non-functional tRNALys in the case of the MERRF syndrome [9], or by the inhibition of the 

replication of mitochondrial genomic copies harbouring deletions or mutations [10–12]. These studies 

suggest that RNA import mechanisms in yeast and human mitochondria should be related, and the factors 

involved in tRK1 import in human mitochondria are expected to share the functional characteristics 

necessary for RNA import in yeast mitochondria [13]. Better understanding of the targeting mechanism 

in yeast and human cells is critical for optimisation of potential therapeutic approaches. 

During the last decade, significant efforts have resulted in identifying the factors responsible for 

tRK1 mitochondrial targeting in yeast [14–16]. According to this mechanism, tRK1 is handled by  

the glycolytic enzyme enolase in the first place, and further targeted to the mitochondrial membrane  

where it forms a complex with the precursor of the mitochondrial lysyl-tRNA synthetase (preMSK) 

(Figure 1A). The RNA determinants, which confer tRK1 import selectivity versus tRK2 have been 

analyzed [17,18] and show that the CUU anticodon and nucleotides from the acceptor arm are critical. 
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These determinants apparently promote the formation of an alternative structure (named the F-form) 

induced by enolase, composed of three hairpins (Figure 1B,C) [18]. Among those, the D stem-loop is 

structurally conserved while the two other ones result from reshuffling of the AA- and T-strands of 

tRK1, which consequently build F form-specific hairpins. Strikingly, from the two enolase isoforms  

in yeast, only Eno2p allows for tRK1 conformational rearrangement and targeting to preMSK, albeit 

their sequences are 97% identical. 

 

Figure 1. (A) Mitochondrial targeting of tRK1 in yeast is achieved by the successive 

actions of enolase 2 and the precursor of the mitochondrial lysyl-tRNA synthetase 

(preMSK). At the mitochondrial outer membrane, preMSK takes over enolase to start the 

import process properly; A fraction of the canonical tRNA L-form (B) tRK1 pool is 

deviated from the cytosolic translation process by the enolase 2, which favors the tRNA 

conformational change leading to the formation of the F-form (C). The D stem-loop is the 

only domain of the tRNA, which is not scrambled during this process. The nucleotide color 

code is indicated in panel (C). 
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This mechanism seems to be very close to a potential mechanism in human mitochondria since 

tRK1 import can be directed in vitro using human pre-lysyl-tRNA synthetase (preKARS2) and rabbit 

enolase [13]. The existence of a cryptic mitochondrial import mechanism of tRNA in human cells and 

its in vitro reconstitution points to human enolases as putative factors in this process. 

In the present study, we address the capacity of human enolases to participate in the tRK1 import 

process by in vitro import assay, electrophoretic mobility shift assay (EMSA), and by determining the 

influence of α, β and γ human enolases on the affinity of preKARS2 for tRK1. Our results show that 

human enolases promote tRK1 import into mitochondria isolated from HepG2 cells. We also show  

that enolase is capable of binding to tRK1 and that pre-incubating tRK1 with enolase improves the  

preKARS2 binding efficiency by decreasing the dissociation constant by one order of magnitude. 

These results indicate that human enolases participate in the mitochondrial import pathway of tRK1 in 

human cells together with preKARS2, demonstrating the high similarity between the mechanisms 

occurring in yeast and human cells. 

2. Results 

The three human forms of enolase (α, β, γ) are also very conserved and present average identities of 

62% with respect to the yeast enolase 2 (Figure 2) [19]. To compare the import-directing capacities of 

human enolase isoforms, we overexpressed and tag-purified each of the three isozymes of human 

enolase in E. coli. The in vitro import test was performed by incubating proteins and labelled  

RNA with purified mitochondria from HepG2 cells, as described previously [13]. Upon addition of 

recombinant preKARS2, a small proportion of the tRK1 pool was protected from nuclease degradation 

(Figure 3), indicating its import into mitochondria. The amount of imported RNA was determined by 

comparison of the band densities of the protected full-sized RNA isolated from the mitoplasts after  

the import assay versus an aliquot of the input (labelled RNA). tRK1 was very poorly imported with 

preKARS2 alone. However, its import was significantly increased upon addition of any of the human 

enolases. Each of the three isozymes demonstrated comparable import-directing capacities (Figure 3).  

A mock-import test without mitochondria excludes artifactual protection of the RNA by the recombinant 

proteins. This experiment shows that human counterparts of yeast RNA import factors, the glycolytic 

enzyme enolase and the cytosolic precursor of mitochondrial lysyl-tRNA synthetase, are sufficient to 

direct tRK1 import into human mitochondria. 

 



Int. J. Mol. Sci. 2015, 16 9358 

 

 

 

Figure 2. Sequence alignment of the three human enolases and of the two yeast enolases. Genebank Identification of sequences are as 

follows: α-Enolase 693933; β-Enolase 16878083; γ-Enolase 55669906; Enolase-1 628257676; Enolase 2 6321968. 
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Figure 3. Import of tRK1 into isolated HepG2 mitochondria. An example of the in vitro 

import test, autoradiograph of RNA isolated from purified mitochondria and separated in 

denaturing 12% polyacrylamide gel (PAAG) is presented. The full-size RNA is indicated 

by an arrow at the left. Input, 1% of RNA used for each assay (as indicated above the lane), 

corresponding to 30 fmoles of labeled RNA. Mitochondria (+) correspond to the import 

assay, Mitochondria (−) to the mock import assay without mitochondria, used as a control 

for non-specific protein-RNA aggregation. The RNA import efficiency was calculated  

by comparing the signal with the input and indicated below each lane. One example from 

three independent experiments is presented, ±SD indicated. 

The interaction of purified human enolase isoforms with labeled tRK1 was tested by electrophoretic 

mobility shift assay (EMSA). We found that all three isoforms of human enolase can form a complex 

with labelled tRK1 (Figure 4A), with an apparent dissociation constant (Kd) of 2.0 ± 0.5 µM (data not 

shown). Therefore, human enolase isozymes are capable of interacting with yeast tRNALys with the 

same affinity as yeast enolase Eno2p [15]. When preKARS2 and human γ enolase were present in the 

mixture, no ternary complex tRK1-preKARS2-enolase was detected. Instead, in the presence of low 

preKARS2 concentrations, tRK1 was shifted from binding to the enolase to forming a complex with 

preKARS2 (Figure 4B). Such a pattern is characteristic for consecutive reactions, indicating that the first 

protein (enolase) binds to the substrate (tRK1) and then transfers it to the second protein (preKARS2). 

Moreover, the presence of enolase significantly increased the efficiency of tRK1-preKARS2 complex 

formation (apparent Kd decreased from 300 nM to less than 20 nM). 

To compare and quantify the effect of the three human enolase isoforms on tRK1-preKARS2 

complex formation, we used EMSA followed by Scatchard plot analysis. For this, increasing 

concentrations of labeled tRK1 (1–50 nM) and fixed concentration of proteins (0.5 µM of preKARS2 

and 1 µM of enolase) were used. The results demonstrate that in the absence of enolase, preKARS2 

binds tRK1 with a dissociation constant of 300 nM (Figure 4A,B). Addition of enolase isoforms 

significantly improves the efficiency of tRK1-preKARS2 complex formation resulting in more than 

10-fold Kd decrease (from 300 to 12–25 nM) (Figure 5B). These data show that human enolases indeed 

facilitate the interaction between tRK1 and preKARS2. 
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Figure 4. Analysis of RNA-protein interactions by electrophoretic mobility shift assay.  

(A) Autoradiographs of native PAGE-separations of labeled tRK1 in the presence of 

purified human enolase isoforms; (B) The effect of γ enolase on tRK1–KARS2 complex 

formation. Autoradiograph of the native gel is shown at the left, quantification of  

tRK1–KARS2 complex formation—at the right. TRK1, the band corresponding to the  

free tRK1; RNA-protein complexes are shown with arrows. One example from three 

independent experiments is presented. 

3. Discussion 

In vitro assays of tRK1 import in yeast mitochondria have enabled identification of a set of proteins 

involved in the process. In Saccharomyces cerevisiae, enolase 2 (Eno2p) hijacks ~3% of the tRK1 

cytosolic pool, which undertakes conformational changes resulting in the formation of a deeply 

remodeled secondary structure (F-form [18]), which can be transferred to preMSK to be ultimately 

imported into mitochondria [15]. Strikingly, such a mechanism exists in human cells but remained 

unsuspected until recently [8,20]. Further investigations have resulted in a better understanding of the 

tRNA structural requirements [18], as well as in identifying the precursor of human mitochondrial 

lysyl-tRNA synthetase (preKARS2) as a factor critical for the mitochondrial import of tRNA in human 

cells and to hypothesize that mammalian enolases could be involved in the process [13]. These studies 

show a striking similarity between the tRK1 import pathways occurring in yeast and human cells.  

It is thus reasonable to anticipate that, among the three forms of human enolases, at least one may 

participate in the import mechanism. 
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Figure 5. Interaction between labeled tRK1 and preKARS2 in the absence or presence of 

human enolases. Scatchard plot determination of dissociation constants for preKARS2–tRK1 

complex in the absence of enolase (A); or in the presence of various isoforms of human 

enolases, as indicated below the panels (B). The bottom band corresponds to the free tRK1; 

preKARS2–tRK1 complex is shown with an arrow. One example from three independent 

experiments is presented, Kd ± SD is indicated at the right. 
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In the present study, we indeed show that the three isoforms α, β and γ of human enolase are able to 

promote mitochondrial import in vitro, interact physically with tRK1 (Figures 3 and 4), and potentialize 

the affinity of preKARS2 for tRK1 (Figure 5). The human α enolase is expressed ubiquitously, while  

β and γ are muscle and neuron specific, respectively [21]. The human enolases are very similar to yeast 

Eno2p with average identities of 62% (Figure 2). Their theoretical isoelectric pH (pI) indicate that all 

are negatively charged at physiological pH, a situation opposite to RNA binding proteins in general, 

and raises concern about the ability of this protein family to interact with nucleic acids. In order to 

identify potential binding sites for tRK1 on members of this protein family, electrostatic potential 

isosurfaces were calculated. Among the five enolase forms studied, the most acidic pI and electrostatic 

surface potential are observed in the case of γ enolase, which presents scarce positive charges on the 

solvant interface, despite its ability to bind tRK1 and to promote in vitro mitochondrial targeting,  

as demonstrated in the present work. Strikingly, the largest positively charged patches are concentrated 

at the dimerization interface (Figure 6). The interaction of enolase with tRK1 may thus interfere with 

its dimerization, and, therefore, with enzymatic activity, since only enolase dimers are active during 

glycolysis [19]. 

 

Figure 6. Electrostatic surface potentials visualized from the dimerization interface, 

corresponding to the region showing the highest density of positively charged residues, which 

may be responsible for tRK1 binding. Theoretical isoelectric points (pI) are also indicated. 

However, it was previously demonstrated that the glycolytic activity of enolase 2 is not correlated to 

its mitochondrial import activity [15]. Enolase is such an abundant protein that biological processes 

interfering with its enzymatic activity would be negligible for the cell. This assumption is supported by 
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several observations that human enolase is a multifunctional protein. It is active in plasminogen 

recognition [22], and a form lacking the first 93 N-terminal residues encode a DNA binding protein, 

MBP, which binds the c-myc promoter [23]. In some vertebrates, a processed form of enolase also 

serves as a structural component of the eye lens (τ crystallin) and retains enzymatic activity, albeit 

reduced [24]. 

Therefore, our study strongly suggests that the tissue-specific enolase isoforms may perform the 

moonlighting function in RNA mitochondrial import in human cells, similarly to yeast Eno2p. The 

latter seems to act as an RNA chaperone, which redirects part of the tRK1 to the mitochondrial import 

pathway by favoring the structural rearrangement of tRK1, adding to the list of already known 

moonlighting functions of this protein. The present data support the idea that human cells possess  

a cryptic tRNA import mechanism that can be activated in the presence of importable RNAs. 

4. Experimental Section 

4.1. Expression and Purification of Recombinant Proteins 

Purification of recombinant preKARS2 protein was done as described previously [13]. Plasmids 

containing human cDNAs encoding enolase isoforms ENO1 (α), ENO2 (γ, neuronal) and ENO3  

(β, muscle) were purchased from OriGene (Rockville, MD, USA). Coding regions with a C-terminal 

His-tag were inserted into pET30a expression vector. The resulting full-length tagged proteins were 

expressed in Escherichia coli strain BL21 codon plus (DE3)-RIL cells (Stratagene, Agilent technology, 

Santa Clara, CA, USA). The transformed cells were grown in LB broth to a cell density A600 = 0.6, the 

protein expression was induced by 0.5 mM Isopropyl β-D-1-thiogalactopyranoside. After incubation 

for 3 h at 30 °C, cells were harvested, treated with 1 mg/mL of lysozyme on ice for 30 min and 

sonicated 10 × 20 s in 50 mM sodium phosphate buffer (pH 8.0), 300 mM NaCl and 10 mM imidazole. 

The clarified lysate was applied to Ni-NTA beads (Qiagen, Hilden, Germany) for 2 h at 4 °C. After 

washing three times with the same buffer containing 20 mM imidazole, enolases were eluted from  

the beads with 200 mM imidazole, dialyzed against 50 mM Tris-HCl (pH 8.0), 300 mM NaCl and  

40% glycerol and stored at −20 °C. The purity of the proteins was checked by SDS-PAGE with 

Coomassie blue staining. 

4.2. Electrophoretic Mobility Shift Assay (EMSA) 

TRK1 T7 transcripts were obtained in vitro using the Ribomax kit (Promega, Fitchburg, WI, USA). 

Following transcription, the DNA template was removed by digestion with RQ1 RNase-Free DNase 

(Promega), and RNA was purified by 8 M urea −12% PAGE. After elution and ethanol precipitation, 

RNA was dephosphorylated with alkaline phosphatase (Boehringer Mannheim, Mannheim, Germany) 

and labeled at the 5'-end with γ-32P-ATP using T4 polynucleotide kinase (Promega). For the RNA 

binding assay, labeled RNA was denatured at 100 °C and then allowed to slowly cool down to room 

temperature. The appropriate amounts of protein and labeled RNA were mixed in 20 µL of a buffer 

containing 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 mM MgCl2, 5 mM DTT, 10% glycerol,  

0.1 mg/mL BSA and incubated at 30 °C for 15 min. The mixture was fractionated by native 8% PAGE 

in 0.5× Tris-borate buffer (pH 8.3) and 5% glycerol [25], followed by Typhoon-Trio (GE Healthcare, 
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Fairfield, CT, USA) scanning and quantification as described previously [26]. For Scatchard plot 

analysis, several standard EMSA reactions were performed in which the concentrations of proteins  

(0.5 mM for preKARS2 and 1 mM for human enolase isoforms) were kept constant, and the concentration 

of labeled tRK1 varied from 1 to 100 nM. Calculation of the dissociation constant Kd from the linear 

regression of experimental data was done as described in [27]. 

4.3. In Vitro Import Assay 

The in vitro import assay was performed as in [8]. For this, purified HepG2 mitochondria were 

incubated with 32P 5' labeled RNA and purified proteins in import buffer: 0.6 M Sorbitol, 20 mM 

HEPES-KOH (pH 7), 10 mM KCl, 2.5 mM MgCl2, 5 mM DDT and 2 mM ATP. For a standard  

in vitro assay, 3 pmoles of labelled RNA were added to 100 µL of reaction mixture containing 0.1 mg 

of mitochondria (measured by the amount of mitochondrial protein). This corresponds to 100% RNA 

input. After incubation for 15 min at 34 °C, 50 µg/mL of RNase A (Sigma Aldrich, Saint Louis, MO, 

USA) was added and the reaction further incubated for 15 min to digest all the RNA that was not 

imported. Mitochondria were washed three times with buffer containing 0.6 M sorbitol, 10 mM 

HEPES–KOH (pH 6.7) and 4 mM EDTA, then resuspended in 100 µL of the same buffer and treated 

with an equal volume of 0.2% digitonin (Sigma) solution to disrupt the mitochondrial outer membrane, 

followed by purification of mitoplasts. The mitoplast pellet was resuspended in a solution containing 

100 mM CH3COONa, 10 mM MgCl2, 1% SDS and 0.05% Diethylpyrocarbonate (DEPC) and heated 

at 100 °C for 1 min. RNA was extracted at 50 °C using water saturated acidic phenol. RNA was 

precipitated with ethanol and fractionated by 12% PAGE containing 8 M urea, followed by 

quantification by a Typhoon-Trio scanner using Image Quant-Tools software (GE Healthcare). The 

amount of imported RNA was determined by comparison of the band density of protected full-sized 

RNA isolated from the mitoplasts after the import assay with an aliquot (2%–5%) of the RNA input. 

4.4. Protein Alignment, Molecular Modelling and Electrostatic Surface Calculation 

Sequences were obtained using blastp [28], aligned by clustalw [29] and visualized using chimera [30]. 

The three-dimensional molecular model of Eno2p was obtained by automatic homology modeling 

using the SWISS-MODEL pipeline [31]. The best template was 2al1 [32] from the protein databank. 

Electrostatic potential surfaces were represented in PyMOL [33] using PDB2PAQR [34] and APBS [35] 

plugins. Theoretical pI were determined using ExPASy tools [36]. 
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